

УЯЗВИМОСТИ VIEWSTATE

ТИМУР ЮНУСОВ, POSITIVE TECHNOLOGIES

1. ОБЩИЕ СВЕДЕНИЯ О VIEWSTATE ……..….………………….. 3

2. УЯЗВИМОСТИ И АТАКИ ………………………….….………………... 6

3. ЗАЩИТА …………………………………………………………………………. 8

4. ЗАКЛЮЧЕНИЕ ……………………………………………………………….. 9

5. ССЫЛКИ …………….………………………………………………………….. 10

6 О КОМПАНИИ .……………………….…………………………………….. 11

1. ОБЩИЕ СВЕДЕНИЯ О VIEWSTATE

 «Состояние представления — это метод, который платформа веб-страниц ASP.NET

использует для сохранения значений страницы и элемента управления между циклами

обработки. При отображении разметки HTML страницы, текущее состояние страницы и

значения должны сохраняться во время обратного запроса, сериализуясь в строки в

кодировке base64. Затем данные сведения помещаются в скрытое поле или поля состояния

представления».

MSDN

«Что делает ViewState?

 - Сохраняет данные элементов управления по ключу, как хэш-таблица.

 - Отслеживает изменения состояния ViewState'а.

 - Сериализирует и десериализирует сохраненные данные в скрытое поле на клиенте.

 - Автоматически восстанавливает данные на postback'ах.»

Из статьи разработчика ASP.NET о механизмах ViewState

Если еще проще, то ViewState – это скрытый параметр в HTML-форме, который передает

серверу текущую структуру содержимого страницы. Пример использования: сохранение

значений полей формы на странице во время постраничного пролистывания списков.

Несмотря на то, что существуют и активно используются методы избавления от ViewState и

работы без него (в основном, с помощью СУБД), эта технология по умолчанию включена в

ASP.NET и часто ее используют бездумно.

«Еще более важно понимать, чего ViewState НЕ делает.

Что не делает ViewState?

 - ViewState не сохраняет автоматически состояние полей класса (скрытых, защищенных или

открытых).

 - ViewState не запоминает какую-либо информацию при загрузке страницы (только

postback'и).

 - ViewState не снимает необходимость загружать данные при каждом запросе.

 - ViewState не отвечает за загрузку данных, которые были отправлены на сервер, например,

введенных в текстовое поле (хотя ViewState и играет здесь важную роль).»

Из статьи разработчика ASP.NET о механизмах ViewState

Это, естественно, приводит к более глубоким проблемам – отсутствию фильтрации и

непониманию того, как правильно должно работать веб-приложение.

Разработчики подчас думают, что раз ViewState – это сериализованная структура, да еще и

«зашифрованная» base64, то никакой злоумышленник не сможет добраться до ее

содержимого...

На самом же деле, если шифрование и проверка целостности (MAC) отключены, все гораздо

проще. Декодируем base64:

Открываем декодированный файл в hex-редакторе и видим, что перед любой строковой

переменной идут байты, указывающие на длину этой строки (количество байт зависит от

длины строки: для строки <128 байт под длину переменной будет выделен один байт).

В авторитетных источниках указано, что алгоритм работы сериализации/десериализации в

ASP.NET<2.0 – LosFormatter, а в >=2.0 – ObjectStateFormatter. Поэтому, для того чтобы

изменить эту переменную, требуется вычислить длину новой строки, перезаписать строку,

перезаписать байт (байты) с длиной строки, провести обратное кодирование base64 и

подставить во __VIEWSTATE.

2. УЯЗВИМОСТИ И АТАКИ

Если помножить все вышеизложенное на низкий уровень знаний среднестатистического

специалиста о правильной организации безопасности веб-приложения, становится понятно,

что возможно проведение атак, использующих следующие уязвимости:

 Межсайтовое выполнение сценариев (Cross-Site Scripting, XSS)
 Подмена содержимого (Content Spoofing)
 Внедрение операторов SQL (SQL Injection)

 Утечка информации (Information Leakage)
 Логические атаки (Logical Attacks)
 Уязвимости самого ViewState
 Прочие уязвимости

2.1. Межсайтовое выполнение сценариев, Подмена содержимого

Возможность изменения содержимого HTML-страницы следует из главного предназначения

ViewState – «Сохранение значений страницы и элементов управления». Если данные из

ViewState, помещаемые в тело HTTP-ответа, не проходят необходимую фильтрацию, то мы

получаем «Подмену содержимого» и/или «Межсайтовое выполнение сценариев».

Уязвимая конфигурация:

EnableViewStateMac=false

ViewStateEncryptionMode=never|auto

(зависит от RegisterRequiresViewStateEncryption)

ViewStateUserKey=EMPTY

2.2. Утечка информации, Логические атаки

Если разработчик не использует шифрование параметра VIEWSTATE (Securing View State),

злоумышленник может декодировать структуру параметра VIEWSTATE и извлечь оттуда

конфиденциальные данные. Если же не используется и проверка целостности (MAC), то

злоумышленник получает возможность изменить параметры, которые способны повлиять на

логику работы веб-приложения, что может повлечь за собой «Обход аутентификации»

(Authentication Bypass), «Обход авторизации» (Authorization Bypass), «Злоупотребление

функциональными возможностями» (Abuse of Functionality) и т.д.

Уязвимая конфигурация:

ViewStateEncryptionMode=never|auto

EnableViewStateMac=false|true

2.3. Атаки на ViewState

Атакам подвержен и сам механизм ViewState. Например, в сентябре 2010 г. была

опубликована уязвимость, позволяющая расшифровать ViewState, зашифрованный

алгоритмом AES, с помощью отправки множества запросов серверу и отслеживания разных

кодов ошибок [1].

Также в старых версиях (1.0, 1.1) возможны атаки типа «Отказ в Обслуживании» (Denial Of

Service, DoS) (в случае, если VIEWSTATE не шифруется) и Replay-атаки (на зашифрованный

VIEWSTATE). Последние представляют собой атаки на криптографический протокол, когда

перехватываемый пакет можно отправить еще раз и он будет корректно воспринят, что

вызовет нарушения в работе алгоритма. Об этих атаках писал Michal Zalewski еще в 2005

году [2].

2.4. Прочие уязвимости

Переменные, записанные в структуру ViewState, так же как и обычные переменные,

передаваемые методами GET/POST/COOKIES, могут и должны проверяться на все остальные

уязвимости, присущие веб-приложениям, такие как «Внедрение SQL-кода» (SQL Injection),

«Выполнение команд ОС» (OS Commanding), а также на другие уязвимости классов

«Выполнение кода», «Разглашение информации» и проч.

Уязвимая конфигурация:

EnableViewStateMac=false

ViewStateEncryptionMode=never|auto

(зависит от RegisterRequiresViewStateEncryption)

3. ЗАЩИТА

3.1. ENABLEVIEWSTATEMAC

Значение по умолчанию: TRUE

Начиная с версии: 1.0

Включает MAC (Machine Authentication Check) – проверку значения параметра VIEWSTATE с

помощью контрольной суммы.

Необходимо задать свойство EnableViewStateMac="True" в элементе Page.

Кроме того, необходимо для активации настроить свойства validationKey и validation элемента

machineKey.

Поддерживаются встроенные алгоритмы шифрования: SHA1, MD5, 3DES, AES, HMACSHA256,

HMACSHA384, HMACSHA512.

3.2. ViewStateEncryptionMode

Значение по умолчанию: Auto

Начиная с версии: 2.0

Позволяет шифровать параметр VIEWSTATE одним из следующих алгоритмов: DES, 3DES или

AES.

Для активации необходимо настроить свойства decryptionKey и decryption элемента

machineKey.

3.3. ViewStateUserKey

Значение по умолчанию: EMPTY

Начиная с версии: 1.1

Не все знают, что ViewState позволяет защитить не только себя от подмены, но и все

приложение от CSRF с помощью параметра ViewStateUserKey.

ViewStateUserKey – это лишь механизм защиты. Обеспечивать случайность и

непредсказуемость этого параметра – задача разработчика.

Необходимо задать свойство ViewStateUserKey="String" в элементе Page.

4. ЗАКЛЮЧЕНИЕ

Из разделов 2 и 3 видно, что в конфигурациях по умолчанию ViewState надежно защищен от

уязвимостей ненулевого дня, однако очень часто, «намучившись» с постоянно выпадающими

ошибками о нарушении целостности, неправильных аргументах и т.д., разработчики просто

отключают «ключи, вызывающие ошибки», вместе с тем оставляя приложение

незащищенным от различных атак.

Однако если веб-приложение настроено верно, вероятность возникновения ошибок и тем

более уязвимостей можно свести к 0.

5. ССЫЛКИ

 [1] http://weblogs.asp.net/scottgu/archive/2010/09/18/important-asp-net-security-

vulnerability.aspx

[2] http://seclists.org/bugtraq/2005/May/27

[6] О КОМПАНИИ

«Позитив Текнолоджиз» (Positive Technologies) - лидирующая компания на рынке

информационной безопасности.

Основные направления деятельности компании:

 разработка систем комплексного мониторинга информационной безопасности

(XSpider, MaxPatrol);

 оказание консалтинговых услуг в области ИБ;

 предоставление сервисных услуг в области ИБ;

 развитие ведущего российского портала по ИБ Securitylab.ru.

Компания «Позитив Текнолоджиз» (Positive Technologies) – это команда квалифицированных

разработчиков и консультантов. Эксперты компании имеют большой практический опыт,

являются членами международных организаций, активно участвуют в развитии отрасли.

